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We investigate a population genetics model introduced by Waxman and Peck(1)

incorporating mutation, selection, and pleiotropy (one gene affecting several
unrelated traits). The population is infinite, and continuous variation of geno-
type is allowed. Nonetheless, Waxman and Peck showed that if each gene affects
three or more traits, then the steady-state solution of the model can have a non-
zero fraction of the population with identical alleles. We use a recursion technique
to calculate the distribution of alleles at finite times as well as in the infinite-time
limit. We map Waxman and Peck's model into the mean-field theory for Bose
condensation, and a variant of the model onto a bound-state problem in quantum
theory. These mappings aid in delineating the region of parameter space in
which the unique genotype occurs. We also discuss our attempts to correlate the
statistics of DNA-sequence variation with the degree of pleiotropy of various
genes.

KEY WORDS: Population genetics; pleiotropy; quantum mechanics.

1. INTRODUCTION

Recently, Waxman and Peck(1) introduced a simple population genetics
model of an infinite population with a continuous distributions of alleles3

incorporating pleiotropy (one gene affecting several characters of an
organism). They demonstrated that when the number of characters affected
is greater than two, the long-time steady state solution of their model can
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have a nonzero fraction of the population with identical alleles, and that
this phenomenon does not occur if the number of characters affected per
gene is two or fewer.

In this paper we study the time evolution of the distribution of alleles
in this model. Initially, the distribution of alleles is continuous, and at
infinite time there is an infinitely narrow ($-function) peak; we calculate the
distribution of alleles at long but finite times by using an expansion in a
sum of functions (Gaussians) particularly picked to meet the requirements
of this problem. We also examine the relationship between the model with
discrete generations used by Waxman and Peck and a continuous-time
model in which both mutation and selection occur continuously. We
demonstrate that the qualitative behavior of the two models is the same,
but that the dependence of the behavior on the parameters can be different
in the two models.

We show that the population genetics models we consider can be mapped
onto problems in quantum mechanics, specifically Bose�Einstein condensa-
tion(7) and motion of a particle in a central potential.(8, 9) The mapping
onto Bose condensation is performed on the discrete-time model in the
limit that selection is very strong, so that only organisms with fitnesses very
near optimum survive each generation. The mapping onto the quantum
particle in a central potential applies more generally. The simplest case has
the potential independent of time. This case corresponds to the a limit of
the population model in which selection and mutation both occur continu-
ously. The close relation between the continuous-time population biology
models and Schro� dinger's equation has been exploited by Bu� rger4 to
obtain many general results on the long-time behavior of models of the
type studied here. In this paper, we focus on the mapping for a specific
model, which yields a simple physical interpretation of the emergence of a
unique genotype, and allows the extraction of the time-dependence of the
fitness peak as well as comparison with the discrete-time model. We find
that the behavior is qualitatively identical when mutation is continuous
and when it is discrete, though there are some quantitative differences.

We also discuss our attempts to relate the results from this model to
the statistical properties of the sequences that are included in various
genetic databases. We attempt to correlate observed sequence variations
with estimates of the degree of pleiotropy of a sample of genes. The results
of these attempts are inconclusive.

This paper is organized as follows. In Section 2 we introduce the
theoretical models. Section 3 presents our analysis of the time evolution of
the discrete version of the model, demonstrating that the behavior can be
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extracted analytically in a limit in which the typical jump caused by muta-
tion is very large. In Section 4 we present our analysis of the continuous-
time model. Section 5 shows that the discrete-time model can be mapped
onto a continuous-time quantum mechanics problem of a particle in the
presence of a time-dependent potential. This mapping is used to demon-
strate that the behavior in the limit of infinite time is the same for all initial
conditions. Section 6 presents our examination of DNA sequence archives
and our attempts to correlate the statistics of documented sequence varia-
tions to the degree of pleiotropy of various genes. Section 7 recapitulates
our main conclusions.

2. THE MODELS

One model we study is that of Waxman and Peck.(1) In this model, the
population is infinite, the phenotypic variation is continuous, each gene
affects N uncorrelated characters, and the effects of different genes are
uncorrelated (no linkage disequilibrium or epistasis). The model assumes a
very large population of haploid and asexual organisms with discrete
generations. Let x� be a continuous vector with N components which
represents characters that determine the viability of an organism, and
,(x� , t) be the normalized probability density that an organism in the
population has the characters given by x� at time t. The normalization
condition for the probability is given by an N-dimensional integral as

| ,(x� , t) d Nx=1 (1)

At each generation an organism with characters x� survives viability selec-
tion with a probability proportional to exp(&x� 2�2Vs) (this is the definition
of Vs). This Gaussian selection will play an essential role in our analysis of
the model. After this selection, a fraction % of the population mutates; it is
assumed that if a mutation occurs, then the probability that the mutant
takes on the value x� given the parental value y� is f (x� & y� ).

Since ,(x� , t) is a probability density, it is normalized at every time t.
Thus, for this model, the equation for the evolution of ,(x� , t) is

w� (t+1) ,(x� , t+1)=(1&%) w1(x� ) ,(x� , t)+% | f (x� & y� ) w1( y� ) ,( y� , t) d Ny
(2)

where the fitness factor w1(x� ) is

w1(x� )=exp[&x� 2�2Vs] (3)
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The multiplicative factor w� (t+1) in Eq. (2) ensures that the probability
density ,(x� , t+1) is normalized to unity at every time step. Integrating
Eq. (2) over all x� gives the Waxman and Peck result for this normalization:

w� (t+1)=| ,(x� , t) w1(x� ) d Nx (4)

We follow Waxman and Peck and use a Gaussian function for the mutation
probability:

f (x� & y� )=(2?m2)&N�2 exp[&(x� & y� )2�2m2] (5)

where m2 describes the variance of the mutant effects for a single character.
We will also consider a model in which both mutation and selection

occur continuously in time. The continuous time model can be obtained
from the discrete-time one via a limiting process in which {, the time
between successive generations, approaches zero.(11) To see this explicitly,
we define the continuous-time variable T={t (again, { is the interval
between generations; t is the generation number), and we posit that the
parameters % and Vs describing mutation and selection scale with { as
%={3, and Vs=V�{, with 3 and V independent of {. With this scaling, the
change in the population distribution during each generation vanishes
while the change per unit time can tend to a nonzero limit.

Defining 8(x� , T )=,(x� , t) and w� (T )=w� (t), we find, as { � 0,

w1(x� )=exp _&
{x� 2

2V &=1&
{x� 2

2V
+O({2) (6)

and

w� (T+{)=1&
{x� 2

2V
V8(T )+O({2) (7)

where

V8(T )=| x� 28(x� , T ) d Nx (8)

Expanding Eq. (2) for small {, rearranging terms, and taking the limit { � 0,
one finds

�8(x� , T )
�T

=_a(T )&
x� 2

2V & 8(x� , T )+3 | d Nyf (x� & y� )[8( y� , T )&8(x� , T )]

(9)

where a(T )=V8(T )�2V.
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Note that in these models in order to have high fitness, each of the N
components of x� must be near zero. Since each mutation of a gene alters
N characters, pleiotropy reduces the probability that a newly mutated
individual is highly fit.

In the next two sections we calculate the evolution of the probability
density for different N, with an emphasis on the behavior near x� =0 at long
times. In contrast to Waxman and Peck, (1) who solve approximately the
fixed point equation to obtain a time-independent probability density, we
demonstrate that there is only one fixed point solution, and calculate the
time-dependence of the approach to it. In Section 3 we examine the dis-
crete-time model Eq. (2); Section 4 discusses the continuous-time equation
Eq. (9).

3. TIME EVOLUTION OF DISCRETE EQUATIONS

In this section we consider the discrete-time evolution Eq. (2). We will
determine its behavior for Gaussian initial conditions in the strong selec-
tion limit Vs �m2<<1, in which the analysis simplifies considerably. Though
typical biological systems are not described by the strong selection limit, (12)

below in Section 5 we will argue that the behavior is not sensitive either to
the use of this limit or to the choice of initial condition.

Our method of solution of Eq. (2) exploits the following observation.
Suppose at some time t, ,(x� , t) is a normalized Gaussian with variance :,
so that ,(x� , t)=G:(x� ), where5

G:(x� )=(2?:)&N�2 exp _&
x� 2

2:& (10)

Then ,(x� , t+1) is the sum of two Gaussians. This result follows because
Eq. (2) involves the processes of multiplication and of convolution with a
Gaussian. The product of two Gaussians is

G:(x� ) G;(x� )=\ #
2?:;+

N�2

G#(x� ), where 1�#=1�:+1�; (11)

while the convolution of two Gaussians is

| G:(x� & y� ) G;( y� ) d Ny=G$(x� ), where $=:+; (12)
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Therefore, if ,(x� , 0) is a Gaussian, ,(x� , 0)=G:(x� ), then ,(x� , 1) is the sum
of two Gaussians,

,(x� , 1)=(1&%) G;1(:)(x� )+%G;2 (:)(x� ) (13)

with the two ; 's given by

;1(:)=
:

1+:�Vs
(14)

;2(:)=m2+;1(:) (15)

It follows immediately that if ,(x� , t) is the sum of finitely many
Gaussians, then ,(x� , t+1) is also the sum of finitely many Gaussians.
Instead of doing integrals at each time step, we can write recursion rela-
tions for the evolution of the widths and amplitudes of the Gaussians. Our
method of solution has similarities with that used by Kingman(13) on a
simpler model.

Explicitly, we write ,(x� , t) in the form

,(x� , t)=:
i

Ai (t) G:i (t)(x� ) (16)

with the normalization condition �i Ai=1. Then ,(x� , t+1) must satisfy

w� (t+1) ,(x� , t+1)=(1&%) :
i

Bi (t) G;1(:i (t))(x� )+% :
i

Bi (t) G;2(:i (t))(x� )

(17)

with

Bi (t)=Ai (t)[1+:i (t)�Vs]
&N�2 (18)

w� (t+1)=:
i

Bi (t) (19)

Equations (17)�(19) simplify considerably when Vs�m2<<1. In this
case, the standard deviation of the mutation probability function, f, is
much greater than the width of the population distribution after selection.
In this big-mutation-jump limit, ;1(m2)rVs , ;2(m2)rm2, ;1(Vs�n)=
Vs �(n+1), ;2(Vs �n)rm2.6 (Here, n is any positive integer.)
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Fig. 1. Sketch of transitions between :i 's in the limit Vs�m2<<1. Each :i corresponds to a
Gaussian in ,(x� , t).

To analyze these recursion relations, first note that in the absence of
mutations (%=0), if ,(x� , 0)=G:0

(x� ), then ,(x� , t)=G:(t)(x� ), with

:(t)=
:0

1+:0 t�Vs
(20)

Thus, the population distribution remains Gaussian, and at long times, its
width scales as |x� |tt&1�2. As expected, selection continually narrows the
distribution.

Now we examine Eq. (2) with %>0 in the strong selection limit
Vs�m2<<1. Consider the time evolution of an initial distribution consisting
of a Gaussian with variance :=m2. After one time step, the distribution
splits into two Gaussians, an unmutated population with variance ;rVs

and a mutated population with variance ;rm2. After two time steps, the
population consists of three Gaussians with ; values m2, Vs , and Vs �2.
After n steps, the population consists of n+1 Gaussians with ; values m2,
Vs , Vs�2,..., Vs �n. We define :0=m2 and :i=Vs�i for i�1. (Note that these
:'s are time-independent.) If we start with a Gaussian initial distribution of
width much greater than m, then after n steps, the distribution consists of
n+1 Gaussians with ; values :0 ,..., :n . We describe the time evolution
using rate equations for the populations in these states. Figure 1 is a sketch
of the transitions that can occur between the different :'s. Note that at a
given time, a state :i makes transitions to two states, :0 and :i+1.

Writing ,(x� , t) as

,(x� , t)= :
t

i=0

Ai (t) G:i
(x� ) (21)
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and specializing Eqs. (17)�(19) to the limit Vs �m2<<1, we find that the
Ai (t) must obey

A0(t)=%, t>0 (22)

A1(t)=
(1&%)

w� (t)
QA0(t&1), t>0 (23)

Ai (t)=
1&%
w� (t) _

i&1
i &

N�2

Ai&1(t&1), i>1, t>0 (24)

and

w� (t+1)=QA0(t)+ :
t

i=1

A i (t) \ i
i+1+

N�2

(25)

We have defined Q=(1+m2�Vs)
&N�2

; note that Q<<1 in the limit we
consider.

First consider the first two steps of the evolution. Starting with the
initial condition A0(0)=1, Ai (0)=0 for i�1, one finds

A0(1)=%
(26)

A1(1)=1&%

So far not much has happened. But a key thing happens at the next step:

A0(2)=%

A1(2)=
%Q(1&%)

%Q+(1&%) 2&N�2 (27)

A2(2)=
(1&%)2 2&N�2

%Q+(1&%) 2&N�2

Note that A1(2) B Q<<1. In fact, for any t>2, all A i 's with 0<i<t are
proportional to Q. However, as t � �, the number of these terms diverges.
So it is not obvious whether as t � � a solution exists where A0(t)=%,
At(t)=O(1), and all other Ai (t)'s are small, which would imply that the
Gaussian describing the unmutated population contains a nonzero fraction
of the total population. We will find that such a solution can exist only
when N>2.
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3.1. Steady-State Solutions

First we find the steady-state solutions in the longtime limit t � �. In
steady state, the time arguments on the Ai and on w� can be dropped, and
the recursion relations become

A0=% (28)

A1=%Qv, (29)

Ai=v _i&1
i &

N�2

Ai&1 (i>1) (30)

and

1&%
v

=%Q+ lim
t � �

:
t

i=1

Ai \ i
i+1+

N�2

(31)

where we have defined v=(1&%)�w� . We explicitly allow for the possibility
that the amplitude A�#limt � � At(t) is nonzero.

The solution to Eqs. (28)�(31) is

A0=%
(32)

Ai=%Qi &N�2vi, i�1

where v must satisfy

1&%
v

=A�+%Q :
�

i=0

vi \ 1
i+1+

N�2

(33)

Note that v�1, for otherwise the Ai cannot sum to unity, which is required
for normalization of the probability.7 Since as v increases the left-hand side
of Eq. (33) monotonically decreases and the right-hand side monotonically
increases, a solution with A�=0 can exist only if %Q ��

i=0 [1�(i+1)]N�2>
1&%. Conversely, if this inequality is not satisfied, then we expect A�>0.
Since A�tlimt � � vt, we require v=1 if A� is nonzero. We show below
that such a solution is the long-time limit of the solution of the time-
dependent equations.

If A�{0, then a nonzero fraction of the population never mutates. The
probability density of this subpopulation continually narrows, and as t � �
the alleles in this subpopulation are identical. Conversely, if A�=0, then at
long times the probability of observing an unmutated individual tends to
zero, and the probability density retains a finite width at infinite time.
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First consider the case when A�{0. Since the sum in Eq. (33) con-
verges if N>2, and diverges otherwise, we see that A�{0 can occur only
if N>2. When the sum does converge, the unmutated fitness peak, whose
amplitude is A� and whose width is given by Eq. (20), can contain a non-
zero fraction of the total weight. Evaluating Eq. (31) with v=1, we find
A�=1&%&%Q`(N�2), where `(N�2) is the Riemann zeta function.(18, 19)

Now we consider the possibility of a solution in which the unmutated
population constitutes an infinitesimal fraction of the total population as
t � �. Since A�=0, we must have

1&%
%Q

=LiN�2
(v) (34)

where v<1 and Lia(x) is the polylogarithm function:(20)

Lia(x)# :
�

i=1

1
i a x i (35)

When a>1, Lia(1)=`(a) is finite, where again `(z) is the Riemann
zeta function. Therefore, for N>2, the right-hand side of Eq. (34) is bounded
as v � 1, and a solution exists only if (1&%)�(%Q)<`(N�2). In the Q<<1
limit that we have assumed, this happens only when 1&% is very small also.
If this condition is not satisfied, then a nonzero fraction of the population
must be in the unmutated state.

Now we calculate the function ,(x� , t) as t � �.8 First we consider the
case when , has a $-function piece.

In this regime, as t � �, A0=%, A i=%Q(1�i )N�2 (i�1), and A� , the
weight in the $-function, is A�=1&%&%Q`(N�2), where `(N�2) is the
Riemann zeta function. Therefore, as t � �,

,(x� , t) � (1&%&%Q`(N�2)) $(x)+%(2?m2)&N�2 exp _&
x� 2

2m2&
+%Q :

�

n=1

(1�n)N�2 (2?Vs �n)&N�2 exp _&
nx� 2

2Vs &
=(1&%&%Q`(N�2)) $(x)+%(2?m2)&N�2 exp _&

x� 2

2m2&
+%Q(2?Vs)

&N�2 \exp _ x� 2

2Vs&&1+
&1

(36)
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Thus, we see that when ,(x� , t) has a $-function piece as t � �, there is in
addition a divergent contribution at small x, proportional to 1�x� 2. When
the distribution is smooth, we have A0=% and Ai=%Q(1�i )N�2 vi (i�1),
and v<1, and we obtain as t � �

,(x� , t) � %(2?m2)&N�2 exp _&
x� 2

2m2&
+%Q(2?Vs)

&N�2 \v&1 exp _ x� 2

2Vs&&1+
&1

(37)

The sums that arise here are identical to those that come up in the
calculation of Bose�Einstein condensation for an ideal Bose gas.(7) The
weight in the $-function in the genotype distribution, A� , is analogous to
the condensate fraction in the Bose condensation problem. The parameter N,
which here describes the number of traits affected by a mutation, is the
number of spatial dimensions in the Bose gas calculation. That the super-
fluid fraction must be zero for a Bose gas in one and two dimensions is a
special case of a general result in the theory of phase transitions.(21�23)

3.2. Time-Dependent Solutions

We now discuss the time evolution of the population distribution. We
begin with some qualitative remarks. When v<1, the sum in the solution
Eq. (33) converges geometrically. Therefore, in this regime one expects the
approach to the t � � limit to be exponential. In the regime where a
$-function contribution is present as t � �, the $-function is the long-time
limit of a Gaussian describing the unmutated population. The variance of
this Gaussian narrows as 1�t, so we expect the approach to the long-time
limit to be a power law. These expectations are supported by the explicit
calculation that we now present. We also show that the long-time correc-
tions to the amplitude of the $-function are also proportional to 1�t.

We again write recursion relations describing the transitions between
the various Gaussians, now allowing for explicit time dependence in the
Ai (t). Defining v(t)=(1&%)�w� (t+1), these recursion relations are, for
t>0,

A0(t)=% (38)

A1(t)=Qv(t&1) A0(t&1) (39)
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Ai (t)=v(t&1) \i&1
i +

N�2

Ai&1(t&1) (40)

1&%
v(t)

=QA0(t)+ :
t

i=1

Ai (t) \ i
i+1+

N�2

(41)

For the initial conditions A0(0)=1 and Ai (0)=0 (i>0), these recursion
relations have the solution

Ai (t)=Q `
t&1

t$=t&i

v(t$) \1
i +

N�2

A0(t&i ) (42)

The self-consistency condition is

1&%
v(t)

=
Q

v(t) _ :
t+1

j=1
\1

j+
N�2

A0(t+1& j) `
t

t$=t+1& j

v(t$)& (43)

Now we separate out explicitly the term j=t+1; this is reasonable because
v(0) is larger than all the other v's by a factor proportional to 1�Q, yielding

1&%
v(t)

=
Q%
v(t)

:
t

j=1
\1

j+
N�2

`
t

t$=t& j+1

v(t$)+(1&%) \ 1
t+1+

N�2

`
t&1

t$=1

v(t$) (44)

Comparison of this result with that of the steady-state analysis (Eq. (32))
reveals that as t � � the last term on the rhs is just A� , the amplitude of
the $-function. Finally, defining #(t)=>t

t$=1 v(t$), we find

(1&%)=Q :
t

j=1
\1

j+
N�2 #(t)

#(t& j)
+(1&%) \ 1

t+1+
N�2

#(t) (45)

Recall that at long times v(t) approaches a limit v�1. Therefore, for
large t, #(t)=C#vt, where C# is a constant, up to corrections that vanish as
t � �, and

(1&%)=Q :
t

j=1
\1

j+
N�2

v j+(1&%) \ 1
t+1+

N�2

C#vt (46)

When v is strictly less than unity, the convergence is exponential, as expected
from the qualitative argument given above. When limt � � v(t)=1, then,
since the second term on the right-hand side is nonzero as t � �, we must
have #(t)=> t

i=1 v(t)=C$(t+1)N�2, where C$ is a constant. This implies
v(t) � ((t+1)�t)N�2

t1+O(1�t). By calculating the correction to the sum
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because of this variation in v(t), we find that the amplitude of the $-function
obeys At(t)&A� B t&1 as t � �. When N=2, v(t � �) is exponentially
close to unity, so that the decay of the amplitude in the unmutated peak
up to extremely long times is governed by the logarithmic divergence of the
sum for v=1. Thus, in this case we expect At(t) to decay logarithmically
with t.

Figure 2 shows At(t), the fraction of the population that is unmutated,
versus time t for the parameter values %=0.2 and Q=0.1, for N=1, 2,
and 3. The curves were obtained by numerical iteration of the recursion
relations (38)�(41), starting with the initial condition A0(0)=1 and
Ai (0)=0 for i{0. We find, as expected, that At(t) decays to zero for N=1
and N=2, but not for N=3. The scales on the plot were chosen to
emphasize the logarithmic decay when N=2.

To compute the probability density ,(x� , t), we first calculate the
amplitudes Ai (t) using the recursion relation, and then sum the corre-
sponding Gaussians (see Eqs. (16) and (10)) to obtain numerical values of
the probability. These results are plotted in Figs. 3, 4, and 5 for the
parameter-values %=0.2 and Q=0.1. For N=1 (see Fig. 3), we plot ,(x� , t)
against the magnitude of x for various values of the time, t. The picture
shows a probability distribution that first gets narrower, but then settles
down to a time-independent behavior for the largest times. Also drawn on
this plot is the infinite-time probability density, derived from Eqs. (32)
and (33). The density ,(x� , t) settles down to this limiting behavior most
slowly near x� =0, where fitnesses change slowly with x� .

Fig. 2. Plot of the fraction of the population which is unmutated, At(t), versus time t for the
discrete-time model with parameter values Q=0.1, %=0.2, obtained by numerical iteration of
Eqs. (38)�(41) starting with A0(0)=1, Ai{0(0)=0. For N=1 and 2, At(t) decays so that
A�#limt � � At(t)=0, while for N=3, A� is nonzero.
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Fig. 3. Plot of probability density ,(x� , t) against the magnitude of x� for N=1. The numeri-
cal results for times 10, 30, 100, and 1000 are calculated by summing Gaussians with weights
computed from the recursion relations. This set of curves is compared with the expected
infinite-time result, calculated as a solution to Eqs. (32) and (33). For large times, the two
types of calculations agree quite well.

Fig. 4. Plot of density ,(x� , t) gainst the magnitude of x� for N=3. The numerical results are
shown for times 10, 30, 100, and 1000. In contrast to the N=1 case, these curves contain a
central peak that continues to narrow and to grow for large t.
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Fig. 5. Scaled plot of probability density versus the magnitude of x for N=3. The scaling
is picked to make the central peak show a time independent behavior in the new coordinates.
The abscissa is xt1�2, so that for larger time the picture focuses upon smaller values of x. The
ordinate is ,(x� , t) t&N�2, and thereby the picture focuses upon increasingly concentrated dis-
tributions for larger t. Numerical results are shown for times 10, 30, 100, and 1000. In these
coordinates, the figure shows (as expected) an approach to a constant value at large times.

For N=3, a corresponding calculation shows a probability density
that gets more and more peaked as time goes on, see Fig. 4. Notice how,
for t=1000, the peak sticks up sharply from a more slowly varying back-
ground. To see how this peaking occurs, we plot in Fig. 5 a scaled version
of Fig. 4. In this version, we plot ,s(x� s , t) where ,s(x� , t) is the result of
dividing ,(x� , t) by the predicted growth of the peak, proportional to tN�2,
giving us a scaled y-variable ,s(x� , t)=,(x� , t) t&N�2. The scaled x-variable is
x� s=x� t1�2. The resulting plot becomes time-independent for large times and
not-too-large values of x� s . In this way, we see how the peak continually
gets narrower, and more and more dominates the small-x behavior.

4. CONTINUOUS-TIME EQUATIONS

We proceed by Fourier transforming Eq. (9). We define the quantity
,� (k9 , T )=� d Nx ,(x� , T ) exp[ik9 } x� ] and obtain

�,� (k9 , T )
�T

=_a(T )+
1

2V
{2

k9 & ,� (k9 , T )&3[1& f (k9 )] ,� (k9 , T ) (47)
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where f (k9 ) is the Fourier transform of Eq. (5),

f (k9 )=exp[&m2k2�2] (48)

We must also specify, in addition to the initial conditions, two boundary
conditions. One boundary condition is determined by the normalization
requirement � d Nx ,(x� , T )=1, which yields

,� (09 , T )=1 (49)

The second boundary condition is that ,� (k9 , T )�1 for all k9 , which in
particular implies that it cannot diverge as k9 � �. This follows from com-
bining the normalization condition with the non-negativity requirement
,(x� , T )�0:

,� (k9 , T )=| d Nx eik9 } x� ,(x� , T )�| d Nx ,(x� , T )=1 (50)

We now solve Eq. (47) in the limit of long times. Since as T � � both
,� and a become independent of time, we must solve

[& 1
2 {2

k9 &(3V ) f (k9 )] �(k9 )=E�(k9 ) (51)

where �(k9 )#limT � � ,� (k9 , T ) and the eigenvalue E=V(limT � � a(T )&3).
Equation (51) is just the time-independent Schro� dinger equation. The
parameter N, the number of characters affected by each mutation, here
is interpreted as the spatial dimensionality. As shown in Bu� rger and
Bomze(10) and references therein, and as discussed here in Section 5, the
long-time solution to the population biology model is given by the lowest
energy eigenstate of this Schro� dinger equation.

The kinetic energy term &1
2 {2

k9 in Eq. (51) comes from selection. This
term, which in x� -space causes the distribution to become progressively
narrower, acts to make it progressively wider in k9 -space. The potential
energy term &3Vf (k9 ) comes from mutation. This potential is constant at
large k, and has an attractive piece at small k. If we assume that the poten-
tial has a characteristic scale in k, so that f (k9 )=F(mk9 ) (clearly, the fitness
function considered here is of this form), then we can define z� =mk9 and
write the Schro� dinger equation in dimensionless form:

{&
1
2

{2
z� &\3V

m2 + F(z� )= �(z� )=E� �(z� ) (52)
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where E� =E�m2. This equation makes it clear that the nature of the
behavior depends only on the single parameter (3V�m2).

If only the selection (kinetic energy) term were present, the solutions
to Eq. (51) consistent with the normalization condition ,(k9 )=1 would be

�(z� )=exp[ip� } z� ] (53)

where p� = ẑ - 2E� , and ẑ is a unit vector along z� . To be consistent with the
boundary conditions, we require E� �0. The ground state eigenstate thus
has E� =0, so that �(z� )=1. Fourier transforming this result, we see that in
the absence of mutation, at T=� the entire population has the same
genotype.

Now we consider the effects of adding the potential arising from the
mutation term. This potential is attractive, so that the question we must
address is whether the ground state eigenstate remains extended (�(z� ) �
constant as |k9 | � �) or whether it results in a bound state with E� <0,
which has �(z� ) � 0 exponentially in k as k9 � �. In the latter case, the real-
space distribution ,(x� ) is smooth as x� � 0. Therefore, if there is a bound
state, then only an infinitesimal fraction of the population is unmutated,
whereas if there are no bound states, then a finite fraction of the population
has a unique genotype.

It has been proven for the Schro� dinger equation that any attractive
potential, no matter how small, will lead to a bound state for N�2.(9)

Thus, the population distribution in real space as T � �, ,(x� , �), must be
smooth for N�2. When N>2, bound states appear only if the potential
is large enough (3Vs�m2>CN , where CN is of order unity).(8) Therefore,
in this case, if the potential is small (weak mutation), then the ground state
remains extended: �(k9 ) � constant as k9 � �, and the real space distribu-
tion ,(x� ) has a $-function piece. If the potential is large (strong mutation),
then there is a bound state, and the distribution ,(x� ) is not singular at
small x� .

If all the states are extended, then as |k9 | � �, the lowest energy state
obeys {2

k9 ,� (k9 )=0 and has the form ,� (k9 ) � A+Bk&(N&2), where A and B
are coefficients determined by matching to the solution in the small |k9 |
region. For almost all potentials, both A and B are nonzero; Fourier trans-
forming the term proportional to B yields

B term B | d0 |
�

0
dk kN&1e ikx cos(%)k&(N&2) B x&2 (54)

(Here, � d0 is the integral over angles.) Thus, just as in our discrete-time
solution, we find associated with a $-function at x� =0 a power-law diver-
gence at small x: ,(x� ) B x&2.
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In the regime where the ground state is bound, there is a finite energy
gap between the ground state and the excited states, which implies that the
long-time limit is approached exponentially in time. When there is no
bound state, the energy spectrum of the Schro� dinger equation is continu-
ous, which leads to power-law convergence to the long-time limit. These
results are consistent with those from the discrete-time model, and are
discussed further in Section 5.

5. RELATION TO TIME-DEPENDENT QUANTUM MECHANICS

In this section we relate the discrete-time model to the quantum-
mechanical problem of a particle in the presence of a potential that is peri-
odic in time. This correspondence is very useful because it enables us to
show that the probability distribution in the limit of infinite time is the
same for all initial conditions9 and to argue that the time-dependence of
the approach to this limiting distribution is the same for different initial
conditions and for different parameter regimes. For the continuous-time
model, which corresponds to the case of a time-independent potential, the
result that the longtime behavior of Eq. (47) is given by the lowest energy
eigenstate of the associated Schro� dinger Eq. (51) has been proved by Bu� rger
and collaborators [10, and references therein].

We write the discrete-time model for general { as a problem of the
quantum mechanics of a particle in the presence of a time-dependent
potential consisting of $-function ``kicks'' applied at discrete times T=t{,
where t is an integer. To do this, we define 8&(x� , t{)=lim= � 0 8(x� , t{&=�2)
and 8+(x� , t{)=lim= � 0 8(x� , t{+=�2), identify 8+(x� , t{)=,(x� , t), and
write Eq. (2) as

8&(x� , t{)=
8+(x� , (t&1) {) exp[&(x� 2�2Vs)]

� d Nx 8(x� , (t&1) {) exp[&(x� 2�2Vs)]
(55)

8+(x� , t{)=8&(x� , t{)+3{ | d Ny f (x� & y� )[8&( y� , t{)&8&(x� , t{)] (56)

Here, the continuous time variable T=t{, and 3=%�{ is the mutation rate
per unit time.

First consider Eq. (55). Note that the differential equation

�8(x� , T )
�T

=_a(T )&
x� 2

2V & 8(x� , T ), (t&1) {+
=
2

<T<t{+
=
2

(57)
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has the solution

8(x� , T+{)=exp _|
T+{

T
ds a(s)& exp _&

x� 2

2V
{& 8(x� , T ) (58)

Thus, we identify Vs=V�{, and choose a(T ) so that10

exp _&|
T+{

T
ds a(s)&=| d Nx 8(x� , T ) exp _&

x2

2Vs & (59)

Recalling Eq. (55), we see that this differential equation transforms 8+(x� , T )
into 8&(x� , T+{).

We now Fourier transform Eq. (56), yielding

8� +(k9 , t{)=exp[&W(k9 )] 8� &(k9 , t{) (60)

with 8� \(k9 , t{)=� d Nx exp[ik9 } x� ] 8\(x� , t{), f� (k9 )=� d Nx exp[ik9 } x� ] f (x� ),
and

W(k9 )=&ln[1&3{(1& f� (k9 ))] (61)

Equation (60) is the solution to the differential equation11

&
�8� (k9 , T )

�T
=W(k9 ) $(T&t{) 8� (k9 , T ), t{&

=
2

<T<t{+
=
2

(62)

Letting = � 0, Fourier transforming Eq. (57), and using Eq. (62), we
obtain

&
�8� (k9 , T )

�T
=_&a(T )&

1
2V

{2
k9 & 8� (k9 , T )

+W(k9 ) $(T&t{) 8� (k9 , T ), (t&1) {+
=
2

<T<t{+
=
2

(63)
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10 As seen above in Eq. (9), the choice a(T )=� d Nx x2�2V 8(x� , T ) ensures that � d Nx 8(x� , T )=1
for all T.

11 This step follows because Eq. (62) can be rewritten as

&|
ln 8� (k9 , t{+=)

ln 8� (k9 , t{&=)

d ln 8� (k9 , T )=W(k9 ) |
t{+=

t{&=
dT $(T&t{)



Extension to T�0 requires summing the last term over t=0, 1, 2,..., and
we can further extend this differential equation to &�<T<� by defining
8� (k9 , T ) for T<0 by solving it backwards in time, starting at T=0. There-
fore, the Fourier transform of the discrete-time model Eq. (2) can be
written as the differential equation12

&
�8� (k9 , T )

�T
=_&a(T )&

1
2V

{2
k9 & 8� (k9 , T )+ :

�

t=&�

$(T&t{) W(k9 ) 8� (k9 , T )

(64)

In dynamical systems theory, equations with a sum of time-delta functions
are said to be ``kicked''.(25)

We now write

8� (k9 , T )=exp _|
T

0
ds a(s)& !(k9 , T ) (65)

Because 8� (k9 , T ) satisfies Eq. (64), !(k9 , T ) must obey

&
�!(k9 , T )

�T
=&

1
2V

{2
k9 !(k9 , T )+:

n

$(T&t{) W(k9 ) !(k9 , T ) (66)

Equation (66) describes an imaginary-time quantum mechanics
problem in which the Hamiltonian is periodic in time.13 This time-periodicity
implies that all the solutions of Eq. (66) can be written in the form(27�29)

!(k9 , T )=:
m

Am exp[&*mT ] um(k9 , T ) (67)

where each Am is independent of time and the quasi-eigenstates um(k9 , T )
are orthonormal and time-periodic, um(k9 , T+{)=um(k9 , T ). Therefore,

8� (k9 , T )=exp _|
T

0
ds a(s)& :

m

Am exp[&*mT ] um(k9 , T ) (68)

We denote the smallest *m as *0 . As T increases, the relative weight
in this quasi-eigenstate grows exponentially. Therefore, unless the initial
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12 When {, the interval between kicks, goes to zero, W(k9 ) � 3{(1& f (k9 )) and the sum of
delta-functions is replaced by its time average, so that Eq. (64) reduces to Eq. (47), as
expected from the discussion in Section 2 above.

13 Partial differential equations of this type have been studied in the context of stochastic
resonance(26) as well as periodically driven quantum-mechanical system. (27�31)



condition is such that the amplitude A0 is exactly zero, at long times this
quasi-eigenstate dominates, and as T � �, 8(k9 , T ) B u0(k9 , T ). Sturm�
Liouville theory guarantees that the ground state is nodeless(32) and there-
fore not orthogonal to a nonnegative initial condition. Thus, all initial
conditions yield the same behavior in the limit of long times.14

Now we discuss the approach to the long-time limit. At any finite time T,
the ratio of the weights of any two quasi-eigenstates i1 and i2 is propor-
tional to exp[&(*i1

&*i2
) T ]. If there is a nonzero energy gap between the

lowest and second-lowest energy quasi-eigenstates (no $-function in ,(x� )),
then the approach to the long-time limit is exponential in time. If there is
no bound state, then all the states are extended and the spectrum is con-
tinuous; because the potential is of finite range and the wavefunctions are
extended, the *i take the form *i B q2

i �2, where q i has the dimension of a
wavevector in k9 space(8) and hence of a distance in the original x� space.
Therefore,

!(k9 , t)=:
m

Ame&q2
m T�2 (69)

The relative weight of the eigenstate m remains large until qm - - 1�T .
Thus, the $-function at infinite times emerges from a peak that is narrowing,
having a width proportional to - 1�time.

This result for the time-dependence of the approach to the long time
distribution is completely consistent with the explicit calculations presented
in Section 3. Because it does not depend on the magnitude of Vs �m2, it
indicates that the time-dependence of the approach to the long-time limit
is not sensitive to the approximation Vs�m2<<1 made in that section.

6. COMPARISON WITH SEQUENCE DATABASE STATISTICS

Here we attempt to exploit the public availability of extensive DNA
sequence databases and tools for comparing them to assess empirically the
relevance of the pleiotropy model. These databases are comprehensive
compendia of observed DNA sequence variation, for submission of sequence
data to a database is requirement for publication in all biological journals.
The aim is to test a qualitative prediction of the model; that genes with a
high degree of pleiotropy should have a narrower distribution of alleles
than those that affect only one trait. This trend, which is consistent with
the mathematical results of the previous sections, is easy to understand: if
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a gene of high fitness is pleiotropic, then because each mutation affects
several characters independently, the chances are high that a given mutation
leads to a large fitness decrease.

Our first test for possible correlation between degree of pleiotropy and
the probability distribution describing genetic variation is simply to count
the number of naturally occurring variants (alleles) of various Drosophila
melanogaster genes using FlyBase.(33) We choose to include only naturally
occurring D. Melanogaster alleles, including spontaneous mutations arising
in laboratory stocks. Table I shows data for nine genes: brown, cinnabar,
ecdysone receptor, engrailed, fork head, hairless, notch, vestigial, and white.
The number of variants is tabulated together with the length of the primary
transcript and the approximate length of the genomic region encompassing
the gene and its flanking regulatory regions. The number of variants per
gene is normalized both by the transcript length and by the genomic
length. In both cases, the values range over approximately three orders of
magnitude. We estimate the degree of pleiotropy of each of the listed genes
according to the number of tissues�structures and developmental stages in
which the genes are expressed. This ordering is admittedly arbitrary to some
extent, but few would argue with the judgment that fork head (encoding a
transcription factor essential for development of the midgut) and engrailed
(encoding a homeotic gene establishing segmentation) are more pleiotropic
than the eye color mutants cinnabar, white, and brown. Table I reveals a

Table I. Number of Naturally-Occurring Mutations for
Different Drosophila Genesa

Gene PR NV LT LG NV �LT NV �LG

fork head 1 1 4.0 13�60 2.5_10&4 (1.7�7.7)_10&5

engrailed 2 19 3.6 200 5.3_10&4 9.5_10&5

ecdysone receptor 3 13 5.5 35 2.4_10&3 3.7_10&4

notch 4 70 15 80�150 4.7_10&3 (4.7�8.8)_10&4

vestigial 5 55 3.8 46 0.014 1.2_10&3

hairless 6 17 6.0 8 2.0_10&3 2.1_10&3

cinnabar 7 22 2.5 15 8.8_10&3 1.5_10&3

white 8 247 6.0 48�200 0.041 (1.2�5.1)_10&3

brown 9 61 3.0 140 0.020 4.4_10&4

a PR is pleiotropy rank, estimated using the number of tissues�structures and developmental
stages in which the genes are expressed. NV is the number of naturally-occurring variants of
the gene, LT is the transcript length, and LG is the genomic length. All lengths are given in
kilobases. Transcript and genomic lengths are taken from the full-format gene reports in
FlyBase. For genes with multiple transcripts, we report the length of the longest described
transcript. When the full gene report does not include the genomic length, this is estimated
from the FlyBase molecular map of the gene.
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Table II. Genes Examined Using BLAST 2 Sequence
Similarity Search Toola

Gene Length Number of matches

cytochrome P-1-450 2565 81
dystrophin 13957 216
epidermal growth factor receptor 2660 57
HOX A1 (human) 2595 380
huntingtin 10348 108
idothyronine deiodinase 2222 159
rhodopsin 6953 208
alpha-tubulin 1596 488

a Lengths of genes are given in units of the number of bases.

clear inverse correlation between estimated pleiotropy and normalized
number of variants, consistent with the prediction of Waxman and Peck's
model.

A limitation of this approach is that other factors besides degree of
pleiotropy could lead to the observed differences in the number of variants.
For example, a gene that controls eye color may well have a much smaller
overall effect on fitness than a gene that controls a crucial developmental
function. In the population genetics model, differences of this type are
reflected by different values of the fitness parameter Vs . Within the model,
differences in overall variability caused by changing Vs can be distinguished
from those caused by changing the degree of pleiotropy N because they
yield very different functional forms for the distribution function ,(x� ).
However, counting alleles yields no information about the functional form
of the distribution function and thus cannot be used to distinguish between
the mechanisms.

Our second strategy for relating degree of pleiotropy to statistics of
archived DNA sequences aims to obtain information about the form of the
probability distribution describing the variation for a set of genes. It
assumes that two genetic variants whose sequences are highly similar in
sequence space code for genes that are close together in fitness space.
We use the BLAST 2 sequence similarity search tool(34) to search the
GENBANK and EMBL DNA sequence databases15 against the 8 gene
sequences listed in Table II. These databases contain sequences of genes
from many organisms, though a preponderance are from humans. Given a
target sequence, BLAST 2 generates a list of matching sequences along
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with scores which measure the degree of similarity. Because the maximum
possible score for a given sequence is larger for longer sequences, we
avoided examining either very short or very long genes, but even so, the
lengths of the sequences examined varied by nearly a factor of ten. As
shown in Table II, the number of matches obtained also varies by roughly
an order of magnitude for the genes in the table, and is not obviously
correlated with the length of the gene.

High BLAST 2 scores correspond to sequences which match the search
sequence the most closely. The scores range from roughly 104 (a sequence
matching itself ) to the default cutoff of 40. We assume that this score is
inversely correlated with the evolutionary distance between the input gene
and the retrieved sequences, so that a gene with a high fraction of matches
with low scores has a broader probability distribution ,(x) than a gene
with more matches with high scores. Thus, if all the matches tend to be
very good, the gene is considered to be less variable than one with many
poor matches.

Figure 6 is a histogram of the fraction of the matches in a given score
range obtained versus the inverse of the score for several genes. There is
significant variability between these genes; for example, cytochrome P-1-450,
which encodes a general purpose antioxidant expressed in many tissues and
is thus plausibly highly pleiotropic, has relatively many very good matches

Fig. 6. Histogram plot of the fraction of matches with inverse scores in a given range, as a
function of inverse score, for several genes with differing degrees of pleiotropy. Significant
differences in the statistics of these matches are observed; for example, cytochrome P-1-450 has
a very large percentage of matches with high scores, whereas the matches for rhodopsin tend
to have low scores.
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compared to rhodopsin, which is quite specific, encoding a protein essential
for vision. However, HOX A1 has many poor matches, where it might be
expected to be pleiotropic, since it is essential to many developmental
functions. Thus, though interesting variations in the statistics of DNA
sequences for different genes are found, we have not been able to demon-
strate convincingly a correlation between degree of pleiotropy and these
statistical variations.

The behavior of HOX A1 can be explained by a process of repeated
duplication and divergence over the course of evolution. Many of the
retrieved genes have assumed distinct but related developmental functions.
The BLAST 2 analysis presented here does not account for a shift in score
distributions arising from divergence among members of gene families and
superfamilies.

There are several additional difficulties and ambiguities inherent in
comparisons between genome sequence data and population genetics
models of the type considered here. First, the BLAST scores are based on
the quality of sequence alignments, whereas the population genetics models
define distances in terms of fitness, which is a phenotypic quantity. Fitness
distance and evolutionary sequence distance may be quite different; for
example, point mutations at different locations may range in effect from
unobservable to lethal. However, even if there is not a single definite rela-
tionship between sequence distance and fitness distance, so long as these
quantities are positively correlated with each other, meaningful results may
be obtained, if all the genes are all subject to similar uncertainties. Another
limitation of our analysis is that we consider the fitnesses of alleles as fixed.
This is not necessarily the case, as many gene products function as com-
ponents of multi-protein structures or pathways.(35, 36) This dependency of
the fitness value of a specific sequence variant on the remainder of the
genotype is manifested explicitly by the existence of epistatic interactions
(e.g., refs. 37 and 38).

In addition, one may worry that the population genetics model we
have used involves a continuously varying phenotype, whereas sequence
variations are discrete. However, because genes are thousands of base pairs
long, there is still a huge range of variability, and the use of a continuum
model is therefore reasonable.

Finally, pleiotropy itself is defined in terms of phenotypic fitness, and it
is not clear how to create an independent measure that enables one to assign
objectively the degree of pleiotropy N to a given gene. This problem is
illustrated by the case of alpha-tubulin, which codes for a protein vital to the
formation of microtubules. On the one hand, microtubules are expressed in
many different tissues, but on the other hand, all its functions arise from
similar structural properties. Thus, one could categorize alpha-tubulin as
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either highly pleiotropic (since it is expressed in many tissues) or as non-
pleiotropic (since the function is similar everywhere where it is expressed).
This is a serious fundamental difficulty that must be overcome if one is to
make meaningful quantitative statistical analysis of the possible correlations
between the sequence statistics and the degree of pleiotropy.

7. DISCUSSION

In this paper we have analyzed some variants of a population biology
model incorporating selection, mutation, and pleiotropy. We have focused
on understanding the circumstances under which at long times a nonzero
fraction of the population has a unique genotype, and on characterizing the
time dependence of the population distribution in this regime. We have
analyzed the discrete-time model of Waxman and Peck(1) as well as an
associated continuous-time model. We find:

1. In both the discrete and continuous-time models, a unique geno-
type can emerge only when N, the number of characters affected by each
gene, is greater than two, a result in agreement with Waxman and Peck.(1)

For any N>2, the infinite-time population distribution ,(x� , �) contains a
$-function contribution when the mutation rate is nonzero but small, but
not when the mutation rate is large enough.

2. In the regime where ,(x� , �) has a $-function contribution, this
$-function is accompanied by a 1�x2 singularity at small x� .

3. The $-function peak emerges as the limit of a peak that continually
becomes higher and narrower. Thus, in this regime the convergence to the
t � � limit is a power law.

4. In the regime when ,(x� , �) is smooth, the convergence to this dis-
tribution is exponential in time.

5. The continuous- and discrete-time models exhibit qualitatively
identical behavior, but there are quantitative differences between them.

Our analysis of the discrete-time equations relies on the use of
Gaussian functions for both the fitness and mutation terms. Our analysis
of the continuous-time model assumes a Gaussian fitness function, but it
does not assume that the mutation term is Gaussian; it applies for a large
class of different mutation terms. This is because in the quantum mechanics
problem the kinetic energy is always a second derivative, but similar results
are obtained for any short-ranged attractive potential.

Other evolutionary forces or genetic assumptions, such as antagonistic
pleiotropy, more complex fitness landscapes, and discreteness of alleles,
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change qualitatively the nature of the equations describing the system. It
will be interesting to see whether the ``condensation'' phenomenon investi-
gated here is robust when these effects are taken into account.

We also present in Section 6 an assessment of whether the degree of
pleiotropy of selected genes result in systematic trends in their mutation
spectra documented in online databases. These investigations are incon-
clusive. At present, available databases do not allow unbiased sampling of
the sequence variation present in a natural population. Such a database is
likely to emerge as the Human Genome Project's present initiative to sample
the extent of sequence variation in a wide array of genes in the American
population progresses.

ACKNOWLEDGMENTS

We are grateful for support by the National Science Foundation,
Grant DMR 96-26119 (SNC), and the Office of Naval Research, Grant
N00014-96-1-0127 (LPK). We thank Dr. J. J. Sohn and Prof. T. Nagylaki
for useful suggestions.

REFERENCES

1. D. Waxman and J. R. Peck, Pleiotropy and the preservation of perfection, Science
279:1210�1213 (1998).

2. M. Kimura, A stochastic model concerning the maintenance of genetic variability in quan-
titative characters, Proc. Nat. Acad. Sci. USA 54:731�736 (1965).

3. R. Lande, The genetic covariance between characters maintained by pleiotropic mutation,
Genetics 94:203�215 (1980).

4. M. Turelli, Effects of pleiotropy on predictions concerning mutation-selection balance for
polygenic traits, Genetics 111:165�195 (1985).

5. G. P. Wagner, Multivariate mutation-selection balance with constrained pleiotropic
effects, Genetics 122:223�234 (1989).

6. S. Gavrilets and G. de Jong, Pleiotropic models of polygenic variation, stabilizing selec-
tion, and epistasis, Genetics 134:609�625 (1993).

7. S. R. de Groot, G. Y. Hooyman, and C. A. ten Seldam, On the Bose�Einstein condensa-
tion, Proc. Roy. Soc. A 203:266�286 (1950).

8. L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw�Hill, New York, 1968).
9. B. Simon, The bound state of weakly coupled Schro� dinger operators in one and two

dimensions, Ann. of Phys. 97:279�288 (1976).
10. R. Burger and I. M. Bomze, Stationary distributions under mutation-selection balance:

Structure and properties, Adv. Appl. Prob. 28:227�251 (1996).
11. J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory (Harper and

Row, New York, 1970).
12. M. Turelli, Heritable genetic variation via mutation-selection balance: Lerch's zeta meets

the abdominal bristle, Theoret. Pop. Biol. 25:138�193 (1984).

455Population Genetics Model with Pleiotropy



13. J. F. C. Kingman, A simple model for the balance between selection and mutation,
J. Appl. Prob. 15:1�12 (1978).

14. W. H. Barton and M. Turelli, Evolutionary quantitative genetics: how little do we know?
Annu. Rev. Genet. 23:337�370 (1989).

15. R. Bu� rger, On the maintenance of genetic variation: global analysis of Kimura's con-
tinuum-of-alleles model, J. Math. Biol. 2:341�351 (1986).

16. R. Bu� rger, Mutation-selection balance and continuum-of-alleles models, Mathematical
Biosciences 91:67�83 (1986).

17. R. Bu� rger and J. Hofbauer, Mutation load and mutation-selection-balance in quantitative
genetic traits, J. Math. Biol. 32:193�218 (1994).

18. G. F. Carrier, M. Krook, and C. E. Pearson, Functions of a Complex Variable (Hod
books, Ithaca, New York, 1983), p. 192.

19. M. Abramowitz and C. A. Stegun (eds.), Riemann zeta function and other sums of
reciprocal powers, in Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Chapter 23.2, 9th printing (New York, Dover, 1972), pp. 807�808.

20. L. Lewin, Polylogarithms and Associated Functions (North-Holland, New York, 1981).
21. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or

two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17:1133�1136 (1966).
22. P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev.

158:383�386 (1967).
23. J. Fro� hlich and C. Pfister, On the absence of spontaneous symmetry breaking and of

crystalline order in two-dimensional systems, Commun. Math. Phys. 81:277�298 (1981).
24. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4. Analysis of

Operators (Academic Press, New York, 1972).
25. A. J. Lichtenberg and M. A. Liberman, Regular and Chaotic Dynamics, Springer Verlag

Applied Mathematical Sciences series, No. 38 (Springer Verlag, New York, 1992),
p. 219.

26. P. Jung and P. Ha� nggi, Stochastic nonlinear dynamics modulated by external periodic
forces, Europhys. Lett. 8:505�510 (1989).

27. Ya. B. Zel'dovich, The quasienergy of a quantum-mechanical system subjected to a peri-
odic action, Sov. Phys. JETP 24:1006�1008 (1967).

28. V. I. Ritus, Shift and splitting of atomic energy levels by the field of an electromagnetic
wave, Sov. Phys. JETP 24:1041�1044 (1967).

29. Ya. B. Zel'dovich, Scattering and emission of a quantum system in a strong electro-
magnetic wave, Sov. Phys.-Usp. 16:427�433 (1973).

30. D. R. Grempel, S. Fishman, and R. E. Prange, Localization in an incommensurate poten-
tial: An exactly solvable model, Phys. Rev. Lett. 49:833-836 (1982).

31. D. R. Grempel, R. E. Prange, and S. Fishman, Quantum dynamics of a nonintegrable
system, Phys. Rev. A 29:1639�1647 (1984).

32. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw�Hill,
New York, 1953).

33. The FlyBase Consortium, FlyBase��A Drosophila Database, Nucleic Acids Research
26:85�88 (1988); http:��flybase.bio.indiana.edu�.

34. S. F. Altschul, T. L. Madden, A. A. Scha� ffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman, Gapped BLAST and PSI-BLAST: A new generation of protein database search
programs. Nucleic Acids Res. 25:3389�3402 (1997); http:��www.ncbi.nlm.nih.gov�BLAST�.

35. R. C. Lewontin, The Genetic Basis of Evolutionary Change (Columbia University Press,
New York, 1974).

36. G. A. Dover and R. B. Flavell, Molecular coevolution: DNA divergence and the main-
tenance of function, Cell 38:622�623 (1984).

456 Coppersmith et al.



37. R. J. Fijneman, S. S. de Vries, R. C. Jansen, and P. Demant, Complex interactions of new
quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to
lung cancer in the mouse, Nat. Genet. 14:465�467 (1996).

38. T. van Wezel, A. P. Stassen, C. J. Moen, A. A. Hart, M. A. van der Valk, and P. Demant,
Gene interaction and single gene effects in colon tumour susceptibility in mice, Nat. Genet.
14:468�470 (1996).

457Population Genetics Model with Pleiotropy


